

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Microbiology) Semester: II Subject Code: MDC202-1C Subject Name: Fundamentals of Spectroscopy

				h	ach our Vee	:s/	F.		Evaluation Scheme/ Semester								
Sı N	Categor	Subjec t Code	Subject Name	T h	Tu	Pr	t	Credi t Points	Co Co	Theory ntinuous and mprehensive Evaluation		Semester xams	Int	<u>Futorial /</u> ernal essment	End S	cal emester cams	Total
									Ma rks	Marks	Mar ks	Duratio n	Mark s	Duratio n	Mark s	Duratio n	
4	MDC	MDC2 02-1C	Fundamentals of Spectroscopy	3	_	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM :

- The aim is to enable students to acquire a specialized understanding of how light interacts with molecules and materials.
- Different methods of optical spectroscopy and their use to examine chemical and physical properties are addressed at an advanced level.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS					
	Definition of the spectrum - Electromagnetic radiation - quantization of different						
	forms of energies in molecules (translational, rotational, vibrational, and electronic) -						
Ι	Born Oppenheimer approximation.	9					
	Microwave Spectroscopy - theory of microwave spectroscopy - selection rule -						
	Calculation of moment of inertia and bond length of diatomic molecules.						
	UV - Visible Spectroscopy - Absorption laws. Calculations involving Beer						
	Lambert's law - instrumentation - photo colorimeter and spectrophotometer- block						
II	diagrams with description of components - theory - types of electronic transitions -						
	chromophore and auxochromes - Absorption bands and intensity -factors governing						
	absorption maximum and intensity						
	I. R. Spectroscopy – principle - modes of vibration of diatomic, triatomic linear						
III	(CO ₂), and nonlinear triatomic molecules (H ₂ O) - stretching and bending vibrations -						
	selection rules. Expression for vibrational frequency (derivation not needed).						
	X-ray Diffraction: Diffraction geometry: Bragg's law, Diffraction Intensity:						
IV	Scattering from atoms, from the contents of a unit cell; structure factor function,						
1 1	Application to polycrystal diffraction: powder diffraction and crystal structure						
	determination., Diffractometer measurements						

Basics of TEM V TEM instrumentation: electron sources; electromagnetic lenses; geometric and wave 9		
optics applied to TEM; lens aberrations and resolution, Interaction between fast electron and thin crystal (TEM sample), TEM sample preparation	V	9

Course Outline for Practical

SR. NO	COURSE CONTENT	Hrs.		
1	Applications and Uses of Electromagnetic Radiation in the real world.			
2	Demonstrative experiments on Microwave Spectroscopy			
3	Demonstrative experiments on UV Visible Spectroscopy			
4	Demonstrative experiments of IR Spectroscopy			
5	Demonstrative experiments on X-ray diffractions			
6	Demonstrative experiments of TEM			

TEACHING METHODOLOGY:

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

- Basic understanding of light as electromagnetic radiation, their parameters, and interaction with matter
- To learn about various spectroscopy and their applications in the real world.
- Understanding various parts of instruments, sampling methods, and analysis in given spectroscopic techniques

Units	Lecture Duration (In Hrs.)		Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical	
Unit – 1	06	06					
Unit – 2	06	06					
Unit – 3	06	06	3	1	45+30	3 +1	
Unit – 4	06	06]				
Unit – 5	06	06					
TOTAL	45	30	3	1	75	4	

Arrangement of lectures duration and practical session as per defined credit numbers:

Evaluation:

Theory Marks	Practical Marks	Total Marks
50	00	50

REFERENCE BOOKS:

1	Elements of Analytical Chemistry	R. Gopalan, P.S. Subramanian, K. Rengarajan
2	Fundamentals of Analytical Chemistry	D.A. Skoog and D.M. West
3	Principles of Instrumental Methods of Analysis	D.A Skoog and Saunders
4	Instrumental Methods of Analysis	Willard Merit Dean and Settle
5	"Elements of X-Ray Diffraction	Cullity, B.D., and Stock, R. S
6	Advanced Techniques for Materials Characterization	Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S.,
7	Molecular Spectroscopy	Jeanne J. McHale
8	X-Ray diffraction-A practical approach	C. Suryanarayana and M. Grant Nortan
9	Spectroscopy: Fundamentals and Data Interpretation	N K Fuloria, S Fuloria
10	In Situ Transmission Electron Microscopy Experiments	Renu Sharma, Springer